Large Eddy Simulation of the PVC Behavior in both Non-Reacting and Reacting Flows with Different Reynold Numbers
نویسندگان
چکیده
منابع مشابه
Large-Eddy Simulation of Turbulent Reacting Flows
Numerical simulations of combustion in aircraft engines is quite complex, as it requires an adequate description of liquid fuel injection, liquid fuel atomization, drop breakup, drop dynamics, and evaporation, large-scale turbulent fuel air mixing, small scale molecular fuel air mixing, chemical reactions, and turbulence/chemistry interactions. In the present paper, we have identified three of ...
متن کاملLarge-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries
Large-eddy simulation (LES) has traditionally been restricted to fairly simple geometries. This paper discusses LES of reacting flows in geometries as complex as commercial gas turbine engine combustors. The incompressible algorithm developed by Mahesh et al. (J. Comput. Phys., 2004, 197, 215–240) is extended to the zero Mach number equations with heat release. Chemical reactions are modeled us...
متن کاملLarge-eddy simulations of turbulent reacting stagnation point flows
A methodology for solving unsteady premixed turbulent flame propagation problems in high Reynolds number (Re), high Damkohler number (Da) spatially evolving flows is developed. The method is based on Large-Eddy Simulation (LES) with a subgrid combustion model based on the Linear-Eddy Model (Kerstein, 1991). An inter-LES cell burning mechanism has been added to the present formulation to account...
متن کاملProgress in the Prediction of Entropy Generation in Turbulent Reacting Flows Using Large Eddy Simulation
An overview is presented of the recent developments in the application of large eddy simulation (LES) for prediction and analysis of local entropy generation in turbulent reacting flows. A challenging issue in such LES is subgrid-scale (SGS) modeling of filtered entropy generation terms. An effective closure strategy, recently developed, is based on the filtered density function (FDF) methodolo...
متن کاملTowards Petascale Large Eddy Simulation of Reacting Flow
A novel computational methodology, termed “Irregularly Portioned Lagrangian Monte Carlo-Finite Difference” (IPLMCFD) is developed for large eddy simulation (LES) of turbulent flows. This methodology is intended for use in the filtered density function (FDF) formulation and is particularly suitable for simulation of chemically reacting flows on massively parallel platforms. The IPLMCFD facilitat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Heat and Technology
سال: 2016
ISSN: 0392-8764
DOI: 10.18280/ijht.340312